# Introducing Actuarial Science through Simulation 

Kevin L. Shirley, FSA<br>email: shirleykl1 @appstate.edu<br>Department of Mathematical Sciences<br>Appalachian State University, Boone, NC


#### Abstract

Mathematics departments often tout a career as an actuary as a path that their students may pursue after graduation. However, preparation for a career as an actuary has rapidly evolved since the late 1990s. Actuarial science is solidifying itself as an academic field of study. Actuarial organizations, such as the Society of Actuaries (SOA), classify qualified undergraduate programs as Centers of Actuarial Excellence. Traditional mathematics and statistics departments may feel they need additional resources for their students who pursue this path. The author hopes that papers such as this one will begin to fill this need. The purpose of this paper is to provide an introductory experience in actuarial modeling for undergraduate mathematics students. Using simulation as a method to explore the underlying distribution of an insurance product with financial risk allows the student to study problems that would otherwise be inaccessible without first taking an introductory course in contingencies.


## 1. Introduction

We are all exposed to risk on a daily basis. As children, we are taught to avoid certain risks or to develop habits to reduce our exposure to risks. Teenagers are given a curfew because being out past a certain hour is considered risky. We are taught to wash our hands before eating to reduce the risk of contracting contagious diseases. The consequences of an event related to these risks are often thought of in physical terms, but almost always have a financial component as well. Actuaries specialize in modeling risks that have financial consequences. The death of a family's primary financial provider, the loss of income due to disability, the expenses resulting from being involved in an automobile accident, or even dropping one's cell phone are all examples of risks with financial consequences. Actuaries have traditionally self-studied such models through a rigorous professional examination process. Today, future actuaries are receiving an increasing amount of their training at the undergraduate level before entering the workforce [10]. Students interested in reading about the expected preparation of the actuary will find information in [10]. In this paper, the author introduces risk modeling through simulation. The simulation method is increasingly utilized in the workplace. It also provides a way for a student with a less advanced background or a student attending a university with no actuarial science courses to experience the work of an actuary at an earlier stage in their academic development. An early exposure to risk models not only broadens the student's mathematics background, but also adds to the overall knowledge necessary to make an informed decision to pursue a career as an actuary. With this goal in mind, we will develop a model often used by actuaries to solve a broad range of problems.

## 2. The life table

Actuaries use life tables in a number of applications involving mortality risk. These tables contain information on the mortality of groups of lives. The information in the tables includes the number of lives in the group surviving to a given age and the number of deaths each year. Actuaries use life tables relevant to the populations involved in their risk calculation. For example, the life table used when determining mortality rates for a group of truck drivers will differ from a table used in determining mortality rates for fitness coaches. Finding information on life tables applicable to specific groups is normally quite difficult but is included in the duties of an actuary. Life tables for the general population can be found at [1]. To illustrate the use of a life table, we consider a sample of the total US population life table as shown in Table 1.

Table 1: a portion of US population life table 2010

| Age | $\mathrm{q}(\mathrm{x})$ | $l(\mathrm{x})$ | $\mathrm{d}(\mathrm{x})$ |
| :---: | :---: | :---: | :---: |
| $0-1$ | 0.006123 | 100,000 | 612 |
| $1-2$ | 0.000428 | 99,388 | 43 |
| $2-3$ | 0.000275 | 99,345 | 27 |
| $3-4$ | 0.000211 | 99,318 | 21 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| $34-35$ | 0.001180 | 97,587 | 115 |
| $35-36$ | 0.001235 | 97,472 | 120 |
| $36-37$ | 0.001302 | 97,352 | 127 |
| $37-38$ | 0.001377 | 97,225 | 134 |
| $38-39$ | 0.001461 | 97,091 | 142 |
| $39-40$ | 0.001557 | 96,949 | 151 |

In Table 1, a hypothetical cohort of 100,000 newborns is assumed. The life functions are shown as the column labels and defined as follows:

- $\quad q(x)$, the probability of dying between the ages of $x$ and $x+1$;
- $l(x)$, the number of lives surviving to age x ;
- $d(x)=100,000 \cdot q(x)$, the number dying between the ages of $x$ and $x+1$.

We refer to an individual between the ages of $x$ and $x+1$ as $(x)$. From Table 1 , relative frequency probabilities for the population are calculated. For example, the probability a newborn from this cohort survives to age 3 is $\frac{l(3)}{l(0)}=\frac{99318}{100,000}$, or the probability (35) survives to age 36 is $\frac{l(36)}{l(35)}=\frac{97352}{97472}$. One can construct the probabilities that (35) survives to age $35+\mathrm{n}$ by forming the ratios $\frac{l(35+n)}{l(35)}$. Hence, to calculate the probability of (35) dying before attaining age $35+\mathrm{n}$ we use the complement rule of probabilities $1-\frac{l(35+n)}{l(35)}$. By constructing the probabilities that (35) dies before age $35+\mathrm{n}$, we are constructing the cumulative probability distribution for the future lifetime random variable for (35). Since the future lifetime variable for (35) is a continuous random variable, we obtain a discrete approximation to this random variable. In a more general context, the future lifetime distribution is
called the time to failure distribution and is the foundation for many actuarial calculations. A formal introduction to this random variable follows.

## 3. The time to failure random variable

The first step in modeling events contingent upon the occurrence of some failure is defining the "time to failure" random variable. For a life or product currently age $x$, this random variable will be denoted $T_{x}$. Understanding the distribution for $T_{x}$ is foundational in modeling problems related to life insurance. In this paper we model life insurance for a group of insureds, and $T_{x}$ is referred to as the future lifetime variable for $(x)$. One of the more common future lifetime variables to use for human mortality is called the Gompertz model [3], developed by Benjamin Gompertz in 1825. This model uses two parameters, denoted by $B$ and $c$. These parameters need to be estimated for the population of which our group of insureds is a subpopulation. For example, if we insure drivers from a trucking company, then we would estimate the parameters for the larger population of truck drivers. For the population used in this paper, we will use the US life table 2010 without modification. The cumulative distribution function for this distribution is

$$
F_{T_{x}}(t)=1-\exp \left[-\frac{B}{\ln (c)} c^{x}\left(c^{t}-1\right)\right]
$$



Figure 1: US life table 2010 distribution compared to the Gompertz model. (Produced by [Excel].)
Consider the future lifetime variable for a newborn, (0). The probability density functions for the US life table 2010 [1] and the Gompertz model with parameter values $c=1.094$ and $B=0.00004$ are shown in Figure 1. Notice the spike in the distribution from birth to about 1 year of age. This spike illustrates that a high risk of mortality still exists among newborns today. One should also note the local maximum occurring at approximately age 23 . The tendency for risky behavior, accidents, and
suicide in the late teens through the early twenties results in a mortality rate similar to that of an individual in their early thirties. The global maximum in this US life table occurs around age 87. The median age at death in the table is about age 82. The Gompertz distribution shown cannot capture the high mortality at birth or the local maximum occurring around age 23. However, it does capture both the general shape and mode of the distribution.

We use the matching quartile method from mathematical statistics to determine the parameter values for $c$ and $B$ [5]. To obtain the first quartile from the US life table, Table 3 in the appendix, we observe that $l(72)=74,913$ or about $25 \%$ of the cohort has died by age 72 . Since $l(89)=27,131$ and $l(90)=23,619$, the third quartile is about 89.5 . We obtain the values for the parameters above by solving the system of equations

$$
\begin{aligned}
F_{T_{0}}(72) & =0.25 \\
F_{T_{0}}(89.5) & =0.75 .
\end{aligned}
$$

A notable difference in the two models is the differing lifespans. Due to a lack of data for individuals living beyond age 100, the US life table ends at this age. A lifespan of age 110 is used in the Gompertz model shown in Figure 1. For comparison purposes, the probability that a newborn die in their forties using the Gompertz model is $F_{T_{0}}(50)-F_{T_{0}}(40)=0.0230$ whereas the US life table 2010 gives 0.0250 .

In order to provide a closer fit to an actual human population future lifetime distribution, more parameters could be used. One such model is the Makeham distribution [3], [4]. In the Makeham distribution a parameter is added to account for deaths that occur independent of age. For example, deaths due to accident are largely independent of age. The cumulative distribution function for the Makeham distribution is

$$
F_{T_{x}}(t)=1-\exp \left[-A t-\frac{B}{\ln (c)} c^{x}\left(c^{t}-1\right)\right] .
$$

Also, using a different parameter fitting method such as the method of moments, a least likelihood estimation [5], or least squares [9] may result in a better fit.

## 4. A life insurance model

With a future lifetime distribution specified, payments contingent upon the death of the individual can be modeled. The details and terms of the insurance product will be written in a contract called the life insurance policy. These policies can be quite complicated. Actuaries play a critical role in how they are written. The contracts specify the event or events that must occur in order for the insured to receive payment. These specified events range from a single event in a term life insurance policy, to multiple events in a whole life policy with riders attached. Claim triggering events include death, disability, critical illness, long term care, and others. In this section and the next, we will model whole life policies with a death benefit paid at the time of death.

Since death may occur many years in the future, the value of the death benefit in today's dollars must take into account the time value of money. Knowing the value of the death benefit at the time the policy is written is important in determining the correct premium to charge. Using a level annual effective interest rate $i$, and the future lifetime random variable $T_{x}$, the present value of a $\$ 1$ death benefit paid at the instant of death for an insured currently age $x$ is

$$
Z_{x}=\frac{1}{(1+i)^{T_{x}}}
$$

which is itself a random variable. To define $Z_{x}$ in a standard way, let $\delta$ be the continuously compounded annual interest rate. Then $\delta=\ln (1+i)$. To take the present value (PV) of $\$ 1$ paid at time $T_{x}$ in the future we write

$$
Z_{x}=e^{-\delta T_{x}}=\frac{1}{(1+i)^{T_{x}}}
$$

If the death benefit is $R$, the present value is written

$$
R \cdot Z_{x}=R e^{-\delta T_{x}}
$$

This random variable is well studied in actuarial modeling textbooks [3] and [4]. In introducing this random variable, textbooks commonly use an abundance of actuarial notation to develop a general theory of contingencies. We avoid the lengthy introduction and the development of actuarial notation. Instead, we use simulation and technology to gain insight into the distribution of $Z_{x}$ for human populations. Furthermore, we use simulation to solve a problem that life pricing actuaries often encounter.

## 5. A group insurance model

Having specified a model for a single insured age $x$, we now consider a group of $n$ insureds with current ages $x_{1}, x_{2}, \ldots, x_{n}$. Assuming that each life is independent, we have the following independent future lifetime random variables for the members in this group, $T_{x_{1}}, T_{x_{2}}, \ldots, T_{x_{n}}$. Let $R_{i}$ be the death benefit paid at the time of death for the $i^{\text {th }}$ insured. Then the present value of aggregate death benefit amount for the group is

$$
Z_{G(n)}=\sum R_{i} \cdot Z_{x_{i}}=R_{1} e^{-\delta T_{x_{1}}}+R_{2} e^{-\delta T_{x_{2}}}+\cdots+R_{n} e^{-\delta T_{x_{n}}}
$$

We use information about the distribution of $Z_{G(n)}$ to compute the solution for the actuarial problem presented in the next section. However, the analytical determination of this distribution, as with any sum of independent non-identically distributed random variables, requires the use of convolution, and convolution is not tractable for $Z_{G(n)}$. To overcome this problem, we use simulation. Still, some analytical information about the aggregate distribution, such as $E\left[Z_{G(n)}\right]$ and $\operatorname{Var}\left[Z_{G(n)}\right]$, is readily calculated from the single life distributions. By the linear property of the expected value we have,

$$
E\left[Z_{G(n)}\right]=\sum R_{i} \cdot E\left[Z_{x_{i}}\right]
$$

From the assumption that the lives are independent, the formula for the variance is written,

$$
\operatorname{Var}\left[Z_{G(n)}\right]=\sum R_{i}^{2} \cdot \operatorname{Var}\left[Z_{x_{i}}\right]
$$

We also use the assumption of independent lives in the method used to approximate this distribution through simulation. This assumption is so central to our analysis that if it fails to be reflected in the group of lives for which the analysis is intended, the results of our calculations will likely be misleading. We revisit the independence assumption in the discussion on risk in the next section.

## 6. The actuarial problem

Working as a life pricing and product development actuary for TransAmerica, the author was often presented with cases similar to the following. A small-sized employer desires to provide a worksite benefit for its employees. The employer has provided our life insurance company with a table of information that includes ages and proposed benefits. See Table 2. The employer requests a single premium for the entire group to provide this one-time life insurance benefit. An employer chooses to provide such a benefit for several reasons. If the benefit amount is based upon the number of years that the employee has been with the company, then it may be considered a longevity bonus. If it is based upon the current salary of the employee, then the employer may be compensating its employees for past wages that were perceived to be too low. Sometimes an employer uses worksite benefits as part of a total compensation package to attract the highest quality workers.

Table 2: a sample table from an employer showing employee information

| Insured <br> age | Benefit <br> Amount | Sex | Tobacco <br> Use |
| :---: | :---: | :---: | :---: |
| 25 | 35,000 | M | N |
| 38 | 55,000 | F | Y |
| 45 | 70,000 | F | N |
| 61 | 65,000 | M | Y |
| 19 | 25,000 | F | N |
| 29 | 40,000 | M | N |
| 33 | 45,000 | M | N |
| 42 | 60,000 | F | N |
| 26 | 35,000 | M | Y |
| 35 | 50,000 | M | N |

The job of the actuary is to calculate a competitive premium that provides enough value to cover the death benefits as they are paid, the expenses the insurance company incurs as a result of this business, and an acceptable amount of profit. For a single premium group plan, the actuary begins by applying a
premium principle for the benefit and risk and proceeds to incorporate expenses and other items into the model. For this paper, we apply one or more premium principles suitable for the death benefit and mortality risk the company is accepting.

A premium principle is one method used to determine the charge for a particular risk [8]. We should charge the employer a premium $P$ that is at least the expected present value of the aggregate death benefit,

$$
P \geq E\left[Z_{G(n)}\right]
$$

called the actuarial present value of the benefit. Notice, if the deaths do not occur at the times expected, a premium amount equal to $E\left[Z_{G(n)}\right]$ may prove to be insufficient to pay the benefits. In most traditional long-term life insurance plans, the risk to the insurance company is the difference between the expected claims and the actual claims. If a number of deaths occur earlier than predicted on the life policies, then the claims in a particular year can be substantially larger than expected. This variation from expected is the risk that the insurance company accepts. It is measured by the standard deviation of the distribution of the present value of the death benefit,

$$
\operatorname{STDEV}\left[Z_{G(n)}\right]=\sqrt{\operatorname{Var}\left[Z_{G(n)}\right]}
$$

Since a premium principle includes a charge for risk, the standard deviation appears in some premium principle formulas. Also, claims due to death are more predictable when we insure more independent lives. Hence, the mortality risk of independent lives can be viewed as diversifiable [4].

If the lives considered are not independent, then the risk may actually increase with an increase in the number of lives insured. Consider a group of soldiers in the same platoon. Many deaths could occur from this group due to a single event, such as a particular battle or accident. An accident involving the platoon causing a large number of deaths would result in a much greater claim than we would expect if the lives were independent. In this case, the mortality risk is not diversifiable.

Another source of risk is the long-term interest rate we choose for calculating the present value of the death benefit. If the invested premium yields a return substantially less than this interest rate, we may fail to collect enough premium to cover the claim at the time of death. This interest rate and investment risk is another example of a non-diversifiable risk. The more policies we issue with this fixed interest rate, the more the effect an insufficient investment return will have on our ability to pay the claims. However, in this paper, we only model the diversifiable mortality risk of independent lives.

To formalize a small sample of premium principles, we use a loss variable $X$. In the case of a single life currently age $x$, with death benefit $R, X=R \cdot Z_{x}$. In the case of the group model $X=Z_{G(n)}$.

The premium principles we use are,
a) Expected Value Principle:

$$
P=E[X](1+\alpha), \quad \alpha>0
$$

b) Standard Deviation Principle:

$$
P=E[X]+\alpha \cdot \operatorname{STDEV}[X], \quad \alpha>0
$$

c) Percentile Principle:

$$
P=Q_{\alpha} \text { where } \operatorname{Pr}\left[X<Q_{\alpha}\right]=\alpha, \quad 0<\alpha<1
$$

for a continuous random variable $X$.
An actuary may use a premium principle as a starting point to develop an economically sound premium or as a way to determine how much of the premium charged is projected to cover the benefit and its corresponding risk. We apply these principles to show net premiums that cover the benefit and mortality risk.

## 7. Sampling from a distribution

To apply these premium principles, we must understand the distribution for $Z_{G(n)}$. To gain this understanding, we approximate the distribution using a Monte Carlo method. For each insured life in the group, we take a random sample from their future lifetime distribution. Using the sample value, we calculate the present value of the benefit and sum the results to obtain the aggregate present value for the group. This process is repeated 10,000 times. In this section, we discuss the method used to sample the distribution of $T_{x}$ and apply it to estimate the present value of benefit distribution for a single insured.

One of the simplest ways to sample from a distribution is to use the inverse function method [5], [6]. Suppose we need to sample from a continuous probability distribution for a random variable, $Q$, with a cumulative distribution function $F(q)$. Let u be a randomly selected number from the interval $(0,1)$. Define the random variable $Y=F^{-1}(u)$. $Y$ is well-defined since $F(q)$ is an increasing function. Let $F_{Y}$ be the cumulative distribution function for $Y$. We can identify $F_{Y}$ by doing a short calculation.

$$
\begin{aligned}
F_{Y}(q) & =\operatorname{Pr}[Y \leq q] \\
& =\operatorname{Pr}\left[F^{-1}(u) \leq q\right] \\
& =\operatorname{Pr}\left[F\left(F^{-1}(u)\right) \leq F(q)\right] \\
& =\operatorname{Pr}[u \leq F(q)] \\
& =F(q)
\end{aligned}
$$

since $u$ is in $U[0,1]$. Hence, $Y$ has the same distribution as $Q$. We summarize the inverse function method algorithm to generate a random variable $Q$ that has $\operatorname{cdf} F(q)$,

1. Generate $u \in U[0,1]$;
2. Set $Q=F^{-1}(u)$.

To simulate the present value of benefit random variable, $R \cdot Z_{x}=R e^{-\delta T_{x}}$, we sample from the future lifetime distribution for $(x), T_{x}$, and then use the sample value to calculate the simulated value for $Z_{x}$. For human mortality, we use the Gompertz model previously described. Let $u=F_{T_{x}}(t)$ and solve for $t$ to obtain the inverse function,

$$
F_{T_{x}}^{-1}(u)=\frac{1}{\ln (c)} \ln \left(1-\ln (1-u) \frac{\ln (c)}{B c^{x}}\right)
$$

When using the Makeham distribution for a human population, this algebraic process is not possible. In this case, we can use a numerical solver, such as Goal Seek in EXCEL to solve for particular inverse function values.

To demonstrate the simulation process, consider a single insured (35). We use the previously defined parameter values for $B$ and $c, B=0.00004, c=1.094$, in the Gompertz distribution. Suppose the death benefit for this insured is 100,000 , and the continuously compounded interest rate is $\delta=0.04$. If the random number 0.67 is chosen from the uniform distribution, then the sample future lifetime for this individual is $F_{T_{35}}{ }^{-1}(0.67)=52.06$ years. The simulated value is

$$
R \cdot Z_{35}=100,000 e^{-0.04 \times 52.06}=12,463.07
$$

We simulate the distribution for $R \cdot Z_{35}$ by repeating this process 10,000 times and constructing a histogram of the results. One histogram resulting from this simulation is shown in Figure 2.


Figure 2: a histogram for the distribution of $R \cdot Z_{35}$ created using simulation. (Produced by [Excel].)

From this simulation we obtain information about the shape of the distribution, an estimate of the distribution mean, 19,305, an estimate of the standard deviation, 12,951, and estimates for the percentiles. If we apply the expected value principle with $\alpha=0.5$ to this insured life, then we find the net premium $1.5 \cdot E[X]=28,957.50$. If we apply the standard deviation principle with $\alpha=1$, then we get $E[X]+\sigma_{x}=32,256$. Using the $955^{\text {th }}$ percentile, about 42,000 , the percentile principle yields the net premium that has a 0.95 probability of covering the death benefit at the time of death. This probability assumes that we make at least a $4 \%$ continuously compounded return on the investments funded by the 42,000 .

## 8. Solving the group insurance problem

Now that we can simulate the present value of the death benefit for a single insured, it is straightforward to extend our simulation to the group problem. There are four reasons simulation is worth considering when solving the group insurance problem. First, with simulation, we can use commonly accessible software, such as Microsoft EXCEL. Second, simulation allows students earlier access to studying the type of problem introduced in this paper. By contrast, using a traditional analytic approach requires a significant amount of knowledge and notation from a life contingencies textbook. Third, simulation provides enough information about the percentiles of the distribution that the percentile principle can be applied. It also allows us to estimate the shape of the distribution and its tail. Finally, the use of simulation lets us explore net premiums of other insurances and incorporate other measures of risk into our calculation as discussed in Section 9. A description of the algorithm follows:

1. Let $n$ be the number of insured lives in the group;
2. Enter a Loop $k=1$ to $n$ 'initialize age and benefit amounts
a. Age of insured I, $x_{I}$.
b. Benefit Amount for insured $I, B_{I}$
3. Next $k$
4. Enter Loop $J=1$ to 10,000 ' Number of simulations
a. Initialize total present value of death benefit for the group $Z_{T}=0$
b. Enter Loop $I=1$ to $n$
i. Sample the future lifetime of insured $I$
5. Generate $u \in U[0,1]$;
6. $T_{I}=F_{T_{x_{I}}}{ }^{-1}(u)$
ii. Simulate the Present value of the death benefit for insured $I, Z_{I}=B_{I} e^{-\delta T_{I}}$
iii. Add to simulated group total $Z_{T}=Z_{T}+Z_{I}$
c. Next I
d. Record simulated group total.

## 5. Next J

A visual basic macro that uses Microsoft EXCEL to carry out the simulation is included in the appendix.

We apply the algorithm to the insurance model for the group of ten employees whose ages and benefit amounts are shown in Table 2. Using the Gompertz distribution with values $B=0.00004$, and $c=1.094$ for the future lifetime distribution results in the histogram in Figure 3. This histogram shows an estimate for the distribution of $Z_{G(10)}$.


Figure 3: a histogram for the distribution of $Z_{G(n)}$ created using simulation. (Produced by [Excel].)
The horizontal axis in Figure 3 has units $\times 1000$ dollars. From this simulation we obtain estimates of the distribution mean, 111,387 , the standard deviation, 22,742 , and the 95 th percentile, 152,500 . If we apply the expected value principle to $X=Z_{G(10)}$ with $\alpha=0.5$, then we calculate $1.5 \cdot E[X]=167,080.50$. Applying the standard deviation principle with $\alpha=1, E[X]+\sigma_{X}=$ 134,129 . Using the $95^{\text {th }}$ percentile, we find 152,500 is the net premium.

## 9. Conclusion and further study

A natural extension of the previous model is to consider term insurance. An $n$-year term life insurance policy pays the benefit if death occurs within $n$-years and pays nothing otherwise. Hence the random variable for the present value of $\$ 1$ of benefit for $(x)$ is defined by

$$
Z_{x, \text { term-n }}= \begin{cases}e^{-\delta t}, & T_{x}<n \\ 0, & T_{x} \geq n\end{cases}
$$

For example, consider 20-year term insurance on (45) with a 100,000 benefit amount. We simulate the distribution for $X=100,000 \cdot Z_{45, \text { term-20 }}$ using the Gompertz distribution previously defined and $\delta=$ 0.04 . The EXCEL macro for this simulation is contained in the accompanying spreadsheet. The simulation results in an approximate mean of 7,420 and an approximate standard deviation of 20,685. In the resulting histogram, Figure 4, there are no scenarios resulting in a present value of benefit between 0 and 44,000. This observation is explained by the 20 -year term of the policy. No claim is paid if (45) lives 20 years or longer leading to the lower bound for the present value of benefit $100,000 \cdot e^{-.04 \times 20}=44,933$. If we apply the standard deviation principle with $\alpha=1, E[X]+\sigma_{X}=$ 28,105 . Because $\sigma_{X}>E[X]$, most of this net premium is paying for risk, which is economically unsound. In order to address this problem, the charge for risk must be reduced. We can reduce the risk charge per policy by issuing a large number of policies. If N identical policies are issued to independent lives, the resulting expected aggregate present value and aggregate standard deviation are $N \cdot 7,420$ and $\sqrt{N} \cdot 20,685$, respectively. Hence, the net premium per policy is

$$
7,420+\frac{20,685}{\sqrt{N}}
$$

Therefore, if 10,000 identical policies are issued, the net premium per policy is reduced to $7,626.85$. The reduction in the risk charge from issuing a large number of policies illustrates the role that diversifiable risk plays in explaining the economics of the insurance industry.


Figure 4: a histogram for the distribution of $100,000 \cdot Z_{45, \text { term-20 }}$ created using simulation.
(Produced by [Excel].)

It is instructive to compare the net premiums obtained at different ages and for different terms in order to understand the premium differences one observes in sample term life insurance rate sheets. Sample term life insurance rate sheets and quotes can be found online. Term insurance premium rates are normally given as a level monthly payment and will include a loading for profit and expenses. To determine a level premium paid periodically, it is necessary to model life annuities. The interested reader can find detailed discussions of life annuities in actuarial modeling textbooks [3], [4]. Also, the premium quote from a sample rate sheet will vary according to risk class. The risk classes used by insurance companies differ, but most include the designations preferred and non-preferred, male and female, tobacco and non-tobacco. A preferred, male, non-tobacco user is an example of a risk class using these designations. The actuary will use a different life table to calculate the premiums for each risk class. To make the group life net premiums as determined in Section 8 more applicable, the reader can use life tables that reflect the sex and tobacco use of each life in Table 2.

One issue with term insurance is that the insurance contract ends at the end of the term, and the insured's premium seems to have been lost. Of course, it actually goes to pay claims on other term policies whose unfortunate owners do not survive their term. In the late 1990s, in order to help alleviate the feeling of having lost the premium, companies introduced return of premium (ROP) term policies. In ROP term, if a claim is not made during the term, the entire premium is returned to the policy owner. Naturally, there is a cost to this additional benefit. Using simulation and the models developed thus far, this additional cost and the effect this benefit has on the present value distribution can be explored. We begin with the present value equation where $R$ is the death benefit and $P$ is the net premium,

$$
Z_{x, R O P-n}=R \cdot Z_{x, t e r m-n}+\left\{\begin{array}{cc}
0, & T_{x}<n \\
P e^{-\delta n} & , \quad T_{x} \geq n
\end{array}\right.
$$

Since $P$ is included in the random variable for the benefit, circularity results if the distribution for $Z_{x, R O P-n}$ is used in determining P. However, one can use the expected value principle as a starting point when calculating this premium. For example, if we use the expected value of the present value of the ROP benefit for the net premium, we obtain the equation,

$$
P=R \cdot E\left[Z_{x, t e r m-n}\right]+P e^{-\delta n} \cdot \operatorname{prob}\left[T_{x} \geq n\right]
$$

and solving for $P$

$$
P=\frac{R \cdot E\left[Z_{x, \text { term-n }}\right]}{1-e^{-\delta n} \cdot \operatorname{prob}\left[T_{x} \geq n\right]}
$$

To illustrate the determination of $P$, consider 20-year ROP term insurance issued to (45) with a 100,000 benefit amount. From the previous example,

$$
100,000 \cdot E\left[Z_{45, \text { term-20 }}\right] \approx 7,420
$$

Using the Gompertz distribution,

$$
\operatorname{prob}\left[T_{45} \geq 20\right]=1-F_{T_{45}}(20)=0.8793 .
$$

Thus

$$
P \approx \frac{7,420}{1-e^{-.04 \times 20} \cdot 0.8793}=12,266.39
$$

Having a value for $P$, we can use simulation to estimate the distribution of $Z_{x, R O P-n}$. Beginning with the estimate of the distribution, the reader may develop a method or algorithm that can be used to determine $P$ using the percentile principle for the present value of the ROP benefit.

It is also interesting to consider the use of distributions other than the Gompertz distribution for $T_{x}$. When using other parameterized future lifetime distributions, such as the Makeham distribution, it may be more appropriate to use another technique, such as the rejection method, for sampling. Useful and well-described methods of sampling and simulation are found in [6] and [7].

Another natural extension of the group problem is to explore the cost of interest rate risk. In this case, both the future lifetime variable and an interest rate path must be simulated. Suppose $N+f$, where $N$ is a positive integer and $0<f<1$, is a sample value from the distribution of $T_{x}$. Let $\delta_{i}, i=1, \ldots, N+$ 1 , be a continuously compounded annual interest rate path where $\delta_{i}$ is the rate effective in year $i$. Then the present value of the benefit random variable becomes,

$$
R \cdot Z_{x}=R e^{-\delta T_{x}}=R e^{-\left(\sum_{i=1}^{N} \delta_{i}+f \cdot \delta_{N+1}\right)} .
$$

With this addition, our model captures not only mortality risk, but also interest rate risk. A very accessible introduction to modeling interest rates is found in [2].

Finally, the student may research the failure rates for commonly purchased items such as cell phones or laptops. From the failure rates, life table functions as illustrated in Table 1 can be calculated, and a curve fit to the data. Since a warranty is just term life insurance with a benefit amount equal to the cost or a prorated cost of the item, the term insurance model with some modification can be applied to determine net warranty prices.

## Acknowledgements

The author would like to thank the reviewers and proofreaders for their many valuable suggestions.

## Supplementary Electronic Material

Excel worksheet with data and macros:

## References

[1] Arias, E., United States Life Tables, 2010, Centers for Disease Control (CDC), National Vital Statistics Report. Vol 63 No 7 (2014, November). Retrieved from http://www.cdc.gov/nchs/data/nvsr/nvsr63/nvsr63_07.pdf
[2] Babbel, D.F., Merrill, C.B. Valuation of Interest Sensitive Financial Instruments. SOA Monograph M-FI96-1. Schaumburg, Illinois, The Society of Actuaries, 1996.
[3] Bowers, N., Gerber, H., Hickman, J., Jones, D., Nesbitt, C. Actuarial Mathematics, $2^{\text {nd }}$ Edition. Schaumburg, Illinois, The Society of Actuaries, 1997.
[4] Dickson, D.C.M., Hardy, M.R., \& Waters, H.R. . Actuarial Mathematics for Life Contingent Risks. (International Series on Actuarial Science). Cambridge University Press, 2009.
[5] Hogg, R.V., Tanis, E.A. . Probability and Statistical Inference, $5^{\text {th }}$ Edition. Upper Saddle River, NJ. Prentice Hall, 1997.
[6] Ross, S.M. . Simulation, $3^{\text {rd }}$ Edition. San Diego, CA. Academic Press, 2002.
[7] Scollnik, D.P.M. . Simulating Random Variates from Makeham's Distribution and from others with exact or nearly log-concave densities. Transactions of Society of Actuaries, Vol 47. 1995.
[8] Young, V., Premium Principles. Encyclopedia of Actuarial Science, Vol 3., John Wiley and Sons, 2006
[9] Xinlong F., Guoliang H., Abdurishit, Estimation of parameters of the Makeham distribution using the least squares method, Mathematics and Computers in Simulation, Vol 77 No. 1, p. 34-44, February 2008.
[10] "Education FAQs," found at Beanactuary.org, 2016, http://www.beanactuary.org.

## Software

[Excel] A product of Microsoft Corporation https://www.microsoft.com/en-us/

## Appendix

Visual Basic Macro for simulating the distribution for Group Life policies.
Sub GroupLife()
' GroupLife Macro
Sheets("Gompertz GL").Select
Let $\mathrm{n}=$ Excel.Cells(1, 16)
Let Delta $=$ Excel.Cells $(2,16)$ ' Continuously compounded interest rate
Let A = Excel.Cells(2, 3)
Let B = Excel.Cells (4, 3)
Let C = Excel.Cells (3, 3)
Application.Calculation $=x l C a l c u l a t i o n M a n u a l ~ ' S p e e d s ~ u p ~ m a c r o ~$
For $\mathrm{i}=1$ To 10
Let $\mathrm{X}=$ Excel.Cells $(\mathrm{i}+3,15)$ 'Age of insured
Let Benefit $=$ Excel.Cells(i +3 , 16) ' Benefit Amount
Excel.Cells(3, i + 18) = X
For $\mathrm{j}=1$ Ton
'This generates a randomly chosen value from $\mathrm{U}[0,1]$.
Randomize Timer
$\mathrm{u}=$ Rnd
$\mathrm{T}=1 / \log (\mathrm{C}) * \log (1-\log (1-\mathrm{u}) * \log (\mathrm{C}) /(\mathrm{B} *(\mathrm{C} \wedge \mathrm{X})))$
Z $=$ Benefit * $\operatorname{Exp}(-$ Delta * T)
'Excel.Cells( $3+\mathrm{j}, 26$ ) $=\mathrm{T}$
Excel.Cells $(3+\mathrm{j}, \mathrm{i}+18)=\mathrm{Z}$
Next j
Next i
Application.Calculation $=x l C a l c u l a t i o n A u t o m a t i c ~$
End Sub

Table 3. Life table for the total population: United States, 2010, [1]

|  | Prob of dying between $x$ and $x+1$ | Number surviving to age x | Number dying between x and $x+1$ | ```Person-years lived between age x and x+1``` | Total Personyears lived above age $x$. | Expectation of life at age x . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | $\mathrm{q}(\mathrm{x})$ | $1(\mathrm{x})$ | d (x) | $\mathrm{L}(\mathrm{x})$ | $\mathrm{T}(\mathrm{x})$ | e (x) |
| 0-1 | 0.006123 | 100,000 | 612 | 99,465 | 7,866,027 | 78.7 |
| 1-2 | 0.000428 | 99,388 | 43 | 99,366 | 7,766,561 | 78.1 |
| 2-3 | 0.000275 | 99,345 | 27 | 99,331 | 7,667,195 | 77.2 |
| 3-4 | 0.000211 | 99,318 | 21 | 99,307 | 7,567,864 | 76.2 |
| 4-5 | 0.000158 | 99,297 | 16 | 99,289 | 7,468,556 | 75.2 |
| 5-6 | 0.000145 | 99,281 | 14 | 99,274 | 7,369,267 | 74.2 |
| 6-7 | 0.000128 | 99,267 | 13 | 99,260 | 7,269,993 | 73.2 |
| 7-8 | 0.000114 | 99,254 | 11 | 99,249 | 7,170,733 | 72.2 |
| 8-9 | 0.000100 | 99,243 | 10 | 99,238 | 7,071,484 | 71.3 |
| 9-10 | 0.000087 | 99,233 | 9 | 99,229 | 6,972,246 | 70.3 |
| 10-11 | 0.000079 | 99,224 | 8 | 99,220 | 6,873,017 | 69.3 |
| 11-12 | 0.000086 | 99,216 | 9 | 99,212 | 6,773,797 | 68.3 |
| 12-13 | 0.000116 | 99,208 | 12 | 99,202 | 6,674,585 | 67.3 |
| 13-14 | 0.000175 | 99,196 | 17 | 99,188 | 6,575,383 | 66.3 |
| 14-15 | 0.000252 | 99,179 | 25 | 99,167 | 6,476,195 | 65.3 |
| 15-16 | 0.000333 | 99,154 | 33 | 99,138 | 6,377,028 | 64.3 |
| 16-17 | 0.000412 | 99,121 | 41 | 99,101 | 6,277,891 | 63.3 |
| 17-18 | 0.000492 | 99,080 | 49 | 99,056 | 6,178,790 | 62.4 |
| 18-19 | 0.000573 | 99,032 | 57 | 99,003 | 6,079,734 | 61.4 |
| 19-20 | 0.000655 | 98,975 | 65 | 98,942 | 5,980,731 | 60.4 |
| 20-21 | 0.000744 | 98,910 | 74 | 98,873 | 5,881,789 | 59.5 |
| 21-22 | 0.000829 | 98,836 | 82 | 98,795 | 5,782,916 | 58.5 |
| 22-23 | 0.000892 | 98,754 | 88 | 98,710 | 5,684,120 | 57.6 |
| 23-24 | 0.000925 | 98,666 | 91 | 98,621 | 5,585,410 | 56.6 |
| 24-25 | 0.000934 | 98,575 | 92 | 98,529 | 5,486,789 | 55.7 |
| 25-26 | 0.000936 | 98,483 | 92 | 98,437 | 5,388,260 | 54.7 |
| 26-27 | 0.000943 | 98,391 | 93 | 98,344 | 5,289,824 | 53.8 |
| 27-28 | 0.000953 | 98,298 | 94 | 98,251 | 5,191,479 | 52.8 |
| 28-29 | 0.000971 | 98,204 | 95 | 98,157 | 5,093,228 | 51.9 |
| 29-30 | 0.000998 | 98,109 | 98 | 98,060 | 4,995,071 | 50.9 |
| 30-31 | 0.001029 | 98,011 | 101 | 97,961 | 4,897,011 | 50.0 |
| 31-32 | 0.001063 | 97,910 | 104 | 97,858 | 4,799,051 | 49.0 |
| 32-33 | 0.001099 | 97,806 | 108 | 97,752 | 4,701,193 | 48.1 |
| 33-34 | 0.001137 | 97,699 | 111 | 97,643 | 4,603,440 | 47.1 |


| Age | Prob of dying between x and $x+1$ | Number surviving to age x | Number dying between x and $x+1$ | Person-years lived between age $x$ and $x+1$ | Total Personyears lived above age $x$. | Expectation of life at age x . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{q}(\mathrm{x})$ | $1(\mathrm{x})$ | d(x) | L (x) | T (x) | e(x) |
| 34-35 | 0.001180 | 97,587 | 115 | 97,530 | 4,505,797 | 46.2 |
| 35-36 | 0.001235 | 97,472 | 120 | 97,412 | 4,408,267 | 45.2 |
| 36-37 | 0.001302 | 97,352 | 127 | 97,289 | 4,310,855 | 44.3 |
| 37-38 | 0.001377 | 97,225 | 134 | 97,158 | 4,213,567 | 43.3 |
| 38-39 | 0.001461 | 97,091 | 142 | 97,020 | 4,116,408 | 42.4 |
| 39-40 | 0.001557 | 96,949 | 151 | 96,874 | 4,019,388 | 41.5 |
| 40-41 | 0.001663 | 96,798 | 161 | 96,718 | 3,922,514 | 40.5 |
| 41-42 | 0.001793 | 96,637 | 173 | 96,551 | 3,825,796 | 39.6 |
| 42-43 | 0.001962 | 96,464 | 189 | 96,370 | 3,729,245 | 38.7 |
| 43-44 | 0.002177 | 96,275 | 210 | 96,170 | 3,632,875 | 37.7 |
| 44-45 | 0.002423 | 96,065 | 233 | 95,949 | 3,536,705 | 36.8 |
| 45-46 | 0.002676 | 95,833 | 256 | 95,704 | 3,440,756 | 35.9 |
| 46-47 | 0.002931 | 95,576 | 280 | 95,436 | 3,345,052 | 35.0 |
| 47-48 | 0.003205 | 95,296 | 305 | 95,143 | 3,249,616 | 34.1 |
| 48-49 | 0.003505 | 94,990 | 333 | 94,824 | 3,154,473 | 33.2 |
| 49-50 | 0.003830 | 94,658 | 363 | 94,476 | 3,059,649 | 32.3 |
| 50-51 | 0.004177 | 94,295 | 394 | 94,098 | 2,965,173 | 31.4 |
| 51-52 | 0.004535 | 93,901 | 426 | 93,688 | 2,871,075 | 30.6 |
| 52-53 | 0.004903 | 93,475 | 458 | 93,246 | 2,777,386 | 29.7 |
| 53-54 | 0.005284 | 93,017 | 491 | 92,771 | 2,684,140 | 28.9 |
| 54-55 | 0.005684 | 92,526 | 526 | 92,263 | 2,591,369 | 28.0 |
| 55-56 | 0.006117 | 92,000 | 563 | 91,718 | 2,499,106 | 27.2 |
| 56-57 | 0.006589 | 91,437 | 603 | 91,136 | 2,407,388 | 26.3 |
| 57-58 | 0.007095 | 90,834 | 644 | 90,512 | 2,316,253 | 25.5 |
| 58-59 | 0.007626 | 90,190 | 688 | 89,846 | 2,225,741 | 24.7 |
| 59-60 | 0.008180 | 89,502 | 732 | 89,136 | 2,135,895 | 23.9 |
| 60-61 | 0.008767 | 88,770 | 778 | 88,381 | 2,046,759 | 23.1 |
| 61-62 | 0.009397 | 87,992 | 827 | 87,578 | 1,958,378 | 22.3 |
| 62-63 | 0.010085 | 87,165 | 879 | 86,725 | 1,870,800 | 21.5 |
| 63-64 | 0.010863 | 86,286 | 937 | 85,817 | 1,784,075 | 20.7 |
| 64-65 | 0.011758 | 85,348 | 1,004 | 84,847 | 1,698,258 | 19.9 |
| 65-66 | 0.012810 | 84,345 | 1,080 | 83,805 | 1,613,411 | 19.1 |
| 66-67 | 0.014011 | 83,264 | 1,167 | 82,681 | 1,529,606 | 18.4 |

Table 3 (Cont). Life table for the total population: United States, 2010, [1]

|  | ```Prob of dying between x and x+1``` | Number surviving to age x | Number dying between $x$ and $x+1$ | ```Person-years lived between age x and x+1``` | Total Personyears lived above age $x$. | Expectation of life at age x . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | $\mathrm{q}(\mathrm{x})$ | $1(\mathrm{x})$ | d (x) | $\mathrm{L}(\mathrm{x})$ | T (x) | e (x) |
| 67-68 | 0.015290 | 82,098 | 1,255 | 81,470 | 1,446,925 | 17.6 |
| 68-69 | 0.016601 | 80,843 | 1,342 | 80,172 | 1,365,455 | 16.9 |
| 69-70 | 0.018005 | 79,501 | 1,431 | 78,785 | 1,285,283 | 16.2 |
| 70-71 | 0.019548 | 78,069 | 1,526 | 77,306 | 1,206,499 | 15.5 |
| 71-72 | 0.021294 | 76,543 | 1,630 | 75,728 | 1,129,192 | 14.8 |
| 72-73 | 0.023275 | 74,913 | 1,744 | 74,041 | 1,053,464 | 14.1 |
| 73-74 | 0.025528 | 73,169 | 1,868 | 72,236 | 979,423 | 13.4 |
| 74-75 | 0.028061 | 71,302 | 2,001 | 70,301 | 907,188 | 12.7 |
| 75-76 | 0.030820 | 69,301 | 2,136 | 68,233 | 836,886 | 12.1 |
| 76-77 | 0.033775 | 67,165 | 2,268 | 66,031 | 768,654 | 11.4 |
| 77-78 | 0.037252 | 64,896 | 2,418 | 63,688 | 702,623 | 10.8 |
| 78-79 | 0.041136 | 62,479 | 2,570 | 61,194 | 638,935 | 10.2 |
| 79-80 | 0.045411 | 59,909 | 2,721 | 58,549 | 577,741 | 9.6 |
| 80-81 | 0.050146 | 57,188 | 2,868 | 55,754 | 519,193 | 9.1 |
| 81-82 | 0.055445 | 54,321 | 3,012 | 52,815 | 463,438 | 8.5 |
| 82-83 | 0.061272 | 51,309 | 3,144 | 49,737 | 410,624 | 8.0 |
| 83-84 | 0.067764 | 48,165 | 3,264 | 46,533 | 360,887 | 7.5 |
| 84-85 | 0.075818 | 44,901 | 3,404 | 43,199 | 314,354 | 7.0 |
| 85-86 | 0.085319 | 41,497 | 3,540 | 39,727 | 271,155 | 6.5 |
| 86-87 | 0.094975 | 37,956 | 3,605 | 36,154 | 231,429 | 6.1 |
| 87-88 | 0.105525 | 34,351 | 3,625 | 32,539 | 195,275 | 5.7 |
| 88-89 | 0.117007 | 30,726 | 3,595 | 28,929 | 162,736 | 5.3 |
| 89-90 | 0.129450 | 27,131 | 3,512 | 25,375 | 133,807 | 4.9 |
| 90-91 | 0.142873 | 23,619 | 3,375 | 21,932 | 108,432 | 4.6 |
| 91-92 | 0.157280 | 20,245 | 3,184 | 18,653 | 86,500 | 4.3 |
| 92-93 | 0.172661 | 17,061 | 2,946 | 15,588 | 67,847 | 4.0 |
| 93-94 | 0.188988 | 14,115 | 2,668 | 12,781 | 52,259 | 3.7 |
| 94-95 | 0.206214 | 11,447 | 2,361 | 10,267 | 39,478 | 3.4 |
| 95-96 | 0.224274 | 9,087 | 2,038 | 8,068 | 29,211 | 3.2 |
| $\begin{aligned} & 98-99 \\ & 99- \end{aligned}$ | 0.282492 | 3,935 | 1,112 | 3,379 | 10,316 | 2.6 |
| 100 | 0.302838 | 2,823 | 855 | 2,396 | 6,937 | 2.5 |
| $>100$ | 1.000000 | 1,968 | 1,968 | 4,542 | 4,542 | 2.3 |

