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Abstract 

Mathematics departments often tout a career as an actuary as a path that their students may pursue after 

graduation. However, preparation for a career as an actuary has rapidly evolved since the late 1990s. 

Actuarial science is solidifying itself as an academic field of study. Actuarial organizations, such as the 

Society of Actuaries (SOA), classify qualified undergraduate programs as Centers of Actuarial Excellence. 

Traditional mathematics and statistics departments may feel they need additional resources for their 

students who pursue this path. The author hopes that papers such as this one will begin to fill this need. 

The purpose of this paper is to provide an introductory experience in actuarial modeling for undergraduate 

mathematics students. Using simulation as a method to explore the underlying distribution of an insurance 

product with financial risk allows the student to study problems that would otherwise be inaccessible 

without first taking an introductory course in contingencies.  

 

1. Introduction 
We are all exposed to risk on a daily basis. As children, we are taught to avoid certain risks or to 

develop habits to reduce our exposure to risks. Teenagers are given a curfew because being out past a 

certain hour is considered risky. We are taught to wash our hands before eating to reduce the risk of 

contracting contagious diseases. The consequences of an event related to these risks are often thought 

of in physical terms, but almost always have a financial component as well. Actuaries specialize in 

modeling risks that have financial consequences. The death of a family’s primary financial provider, 

the loss of income due to disability, the expenses resulting from being involved in an automobile 

accident, or even dropping one’s cell phone are all examples of risks with financial consequences. 

Actuaries have traditionally self-studied such models through a rigorous professional examination 

process. Today, future actuaries are receiving an increasing amount of their training at the 

undergraduate level before entering the workforce [10]. Students interested in reading about the 

expected preparation of the actuary will find information in [10]. In this paper, the author introduces 

risk modeling through simulation. The simulation method is increasingly utilized in the workplace. It 

also provides a way for a student with a less advanced background or a student attending a university 

with no actuarial science courses to experience the work of an actuary at an earlier stage in their 

academic development. An early exposure to risk models not only broadens the student’s mathematics 

background, but also adds to the overall knowledge necessary to make an informed decision to pursue 

a career as an actuary. With this goal in mind, we will develop a model often used by actuaries to solve 

a broad range of problems. 
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2. The life table 
Actuaries use life tables in a number of applications involving mortality risk. These tables contain 

information on the mortality of groups of lives. The information in the tables includes the number of 

lives in the group surviving to a given age and the number of deaths each year. Actuaries use life tables 

relevant to the populations involved in their risk calculation. For example, the life table used when 

determining mortality rates for a group of truck drivers will differ from a table used in determining 

mortality rates for fitness coaches. Finding information on life tables applicable to specific groups is 

normally quite difficult but is included in the duties of an actuary. Life tables for the general 

population can be found at [1]. To illustrate the use of a life table, we consider a sample of the total US 

population life table as shown in Table 1. 

 

Table 1: a portion of US population life table 2010 
Age q(x) l(x) d(x) 
0-1 0.006123 100,000 612 

1-2 0.000428 99,388 43 

2-3 0.000275 99,345 27 

3-4 0.000211 99,318 21 

⋮ ⋮ ⋮ ⋮ 
34-35 0.001180 97,587 115 

35-36 0.001235 97,472 120 

36-37 0.001302 97,352 127 

37-38 0.001377 97,225 134 

38-39 0.001461 97,091 142 

39-40 0.001557 96,949 151 

 

In Table 1, a hypothetical cohort of 100,000 newborns is assumed. The life functions are shown as the 

column labels and defined as follows:  

 

• 𝑞(𝑥), the probability of dying between the ages of 𝑥 and 𝑥 + 1;  

• 𝑙(𝑥), the number of lives surviving to age x;  

• 𝑑(𝑥)  =  100,000 ∙ 𝑞(𝑥), the number dying between the ages of 𝑥 and 𝑥 + 1.  

 

We refer to an individual between the ages of 𝑥 and 𝑥 + 1 as (𝑥). From Table 1, relative frequency 

probabilities for the population are calculated. For example, the probability a newborn from this cohort 

survives to age 3 is 
𝑙(3)

𝑙(0)
=

99318

100,000
, or the probability (35) survives to age 36 is 

𝑙(36)

𝑙(35)
=

97352

97472
. One can 

construct the probabilities that (35) survives to age 35 + n by forming the ratios 
𝑙(35+𝑛)

𝑙(35)
. Hence, to 

calculate the probability of (35) dying before attaining age 35 + n we use the complement rule of 

probabilities 1 −
𝑙(35+𝑛)

𝑙(35)
. By constructing the probabilities that (35) dies before age 35 + n, we are 

constructing the cumulative probability distribution for the future lifetime random variable for (35). 

Since the future lifetime variable for (35) is a continuous random variable, we obtain a discrete 

approximation to this random variable. In a more general context, the future lifetime distribution is 
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called the time to failure distribution and is the foundation for many actuarial calculations. A formal 

introduction to this random variable follows. 

 

3. The time to failure random variable 
The first step in modeling events contingent upon the occurrence of some failure is defining the “time 

to failure” random variable. For a life or product currently age 𝑥, this random variable will be denoted 

𝑇𝑥 . Understanding the distribution for 𝑇𝑥  is foundational in modeling problems related to life 

insurance. In this paper we model life insurance for a group of insureds, and 𝑇𝑥 is referred to as the 

future lifetime variable for (𝑥). One of the more common future lifetime variables to use for human 

mortality is called the Gompertz model [3], developed by Benjamin Gompertz in 1825. This model 

uses two parameters, denoted by 𝐵 and 𝑐. These parameters need to be estimated for the population of 

which our group of insureds is a subpopulation. For example, if we insure drivers from a trucking 

company, then we would estimate the parameters for the larger population of truck drivers. For the 

population used in this paper, we will use the US life table 2010 without modification. The cumulative 

distribution function for this distribution is  

 

𝐹𝑇𝑥
(𝑡) = 1 − exp [−

𝐵

ln(𝑐)
𝑐𝑥(𝑐𝑡 − 1)] . 

 

 

 
Figure 1: US life table 2010 distribution compared to the Gompertz model. (Produced by [Excel].) 

Consider the future lifetime variable for a newborn, (0). The probability density functions for the US 

life table 2010 [1] and the Gompertz model with parameter values 𝑐 = 1.094 and 𝐵 = 0.00004 are 

shown in Figure 1. Notice the spike in the distribution from birth to about 1 year of age. This spike 

illustrates that a high risk of mortality still exists among newborns today. One should also note the 

local maximum occurring at approximately age 23. The tendency for risky behavior, accidents, and 
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suicide in the late teens through the early twenties results in a mortality rate similar to that of an 

individual in their early thirties. The global maximum in this US life table occurs around age 87. The 

median age at death in the table is about age 82. The Gompertz distribution shown cannot capture the 

high mortality at birth or the local maximum occurring around age 23. However, it does capture both 

the general shape and mode of the distribution.  

 

We use the matching quartile method from mathematical statistics to determine the parameter values 

for 𝑐 and 𝐵 [5]. To obtain the first quartile from the US life table, Table 3 in the appendix, we observe 

that 𝑙(72) = 74,913  or about 25% of the cohort has died by age 72. Since 𝑙(89) = 27,131  and 

𝑙(90) = 23,619, the third quartile is about 89.5. We obtain the values for the parameters above by 

solving the system of equations 

𝐹𝑇0
(72) = 0.25 

𝐹𝑇0
(89.5) = 0.75. 

 

A notable difference in the two models is the differing lifespans. Due to a lack of data for individuals 

living beyond age 100, the US life table ends at this age. A lifespan of age 110 is used in the Gompertz 

model shown in Figure 1. For comparison purposes, the probability that a newborn die in their forties 

using the Gompertz model is 𝐹𝑇0
(50) −  𝐹𝑇0

(40) = 0.0230  whereas the US life table 2010 gives 

0.0250. 

 

In order to provide a closer fit to an actual human population future lifetime distribution, more 

parameters could be used. One such model is the Makeham distribution [3], [4]. In the Makeham 

distribution a parameter is added to account for deaths that occur independent of age. For example, 

deaths due to accident are largely independent of age. The cumulative distribution function for the 

Makeham distribution is 

𝐹𝑇𝑥
(𝑡) = 1 − exp [−𝐴𝑡 −

𝐵

ln(𝑐)
𝑐𝑥(𝑐𝑡 − 1)] . 

 

Also, using a different parameter fitting method such as the method of moments, a least likelihood 

estimation [5], or least squares [9] may result in a better fit. 

 

4. A life insurance model 
With a future lifetime distribution specified, payments contingent upon the death of the individual can 

be modeled. The details and terms of the insurance product will be written in a contract called the life 

insurance policy. These policies can be quite complicated. Actuaries play a critical role in how they are 

written. The contracts specify the event or events that must occur in order for the insured to receive 

payment. These specified events range from a single event in a term life insurance policy, to multiple 

events in a whole life policy with riders attached. Claim triggering events include death, disability, 

critical illness, long term care, and others. In this section and the next, we will model whole life 

policies with a death benefit paid at the time of death.  
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Since death may occur many years in the future, the value of the death benefit in today’s dollars must 

take into account the time value of money. Knowing the value of the death benefit at the time the 

policy is written is important in determining the correct premium to charge. Using a level annual 

effective interest rate 𝑖, and the future lifetime random variable 𝑇𝑥, the present value of a $1 death 

benefit paid at the instant of death for an insured currently age 𝑥 is 

 

𝑍𝑥 =
1

(1 + 𝑖)𝑇𝑥
 

 

which is itself a random variable . To define 𝑍𝑥  in a standard way, let 𝛿  be the continuously 

compounded annual interest rate. Then 𝛿 = ln (1 + 𝑖). To take the present value (PV) of $1 paid at 

time 𝑇𝑥 in the future we write 

𝑍𝑥 = 𝑒−𝛿𝑇𝑥 =
1

(1 + 𝑖)𝑇𝑥
. 

If the death benefit is 𝑅,  the present value is written 

 

𝑅 ∙ 𝑍𝑥 = 𝑅𝑒−𝛿𝑇𝑥 . 
 

This random variable is well studied in actuarial modeling textbooks [3] and [4]. In introducing this 

random variable, textbooks commonly use an abundance of actuarial notation to develop a general 

theory of contingencies. We avoid the lengthy introduction and the development of actuarial notation. 

Instead, we use simulation and technology to gain insight into the distribution of 𝑍𝑥  for human 

populations. Furthermore, we use simulation to solve a problem that life pricing actuaries often 

encounter.   

 

5. A group insurance model 
Having specified a model for a single insured age 𝑥, we now consider a group of 𝑛 insureds with 

current ages 𝑥1, 𝑥2, … , 𝑥𝑛. Assuming that each life is independent, we have the following independent 

future lifetime random variables for the members in this group, 𝑇𝑥1
, 𝑇𝑥2

, …, 𝑇𝑥𝑛
. Let 𝑅𝑖 be the death 

benefit paid at the time of death for the 𝑖𝑡ℎ insured. Then the present value of aggregate death benefit 

amount for the group is 

𝑍𝐺(𝑛) = ∑ 𝑅𝑖 ∙ 𝑍𝑥𝑖
= 𝑅1𝑒−𝛿𝑇𝑥1 + 𝑅2𝑒−𝛿𝑇𝑥2 + ⋯ + 𝑅𝑛𝑒−𝛿𝑇𝑥𝑛 . 

 

We use information about the distribution of 𝑍𝐺(𝑛) to compute the solution for the actuarial problem 

presented in the next section. However, the analytical determination of this distribution, as with any 

sum of independent non-identically distributed random variables, requires the use of convolution, and 

convolution is not tractable for 𝑍𝐺(𝑛) . To overcome this problem, we use simulation. Still, some 

analytical information about the aggregate distribution, such as 𝐸[𝑍𝐺(𝑛)] and 𝑉𝑎𝑟[𝑍𝐺(𝑛)], is readily 

calculated from the single life distributions. By the linear property of the expected value we have, 
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𝐸[𝑍𝐺(𝑛)] = ∑ 𝑅𝑖 ∙ 𝐸[𝑍𝑥𝑖
]. 

 

From the assumption that the lives are independent, the formula for the variance is written, 

 

𝑉𝑎𝑟[𝑍𝐺(𝑛)] = ∑ 𝑅𝑖
2 ∙ 𝑉𝑎𝑟[𝑍𝑥𝑖

] . 

 

We also use the assumption of independent lives in the method used to approximate this distribution 

through simulation. This assumption is so central to our analysis that if it fails to be reflected in the 

group of lives for which the analysis is intended, the results of our calculations will likely be 

misleading. We revisit the independence assumption in the discussion on risk in the next section. 

 

6. The actuarial problem 
Working as a life pricing and product development actuary for TransAmerica, the author was often 

presented with cases similar to the following. A small-sized employer desires to provide a worksite 

benefit for its employees. The employer has provided our life insurance company with a table of 

information that includes ages and proposed benefits. See Table 2. The employer requests a single 

premium for the entire group to provide this one-time life insurance benefit. An employer chooses to 

provide such a benefit for several reasons. If the benefit amount is based upon the number of years that 

the employee has been with the company, then it may be considered a longevity bonus. If it is based 

upon the current salary of the employee, then the employer may be compensating its employees for 

past wages that were perceived to be too low. Sometimes an employer uses worksite benefits as part of 

a total compensation package to attract the highest quality workers.  

 

Table 2: a sample table from an employer showing employee information 

Insured 

age 

Benefit 

Amount 

Sex Tobacco 

Use 

25 35,000 M N 

38 55,000 F Y 

45 70,000 F N 

61 65,000 M Y 

19 25,000 F N 

29 40,000 M N 

33 45,000 M N 

42 60,000 F N 

26 35,000 M Y 

35 50,000 M N 

 

The job of the actuary is to calculate a competitive premium that provides enough value to cover the 

death benefits as they are paid, the expenses the insurance company incurs as a result of this business, 

and an acceptable amount of profit.  For a single premium group plan, the actuary begins by applying a 
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premium principle for the benefit and risk and proceeds to incorporate expenses and other items into 

the model. For this paper, we apply one or more premium principles suitable for the death benefit and 

mortality risk the company is accepting. 

 

A premium principle is one method used to determine the charge for a particular risk [8]. We should 

charge the employer a premium 𝑃 that is at least the expected present value of the aggregate death 

benefit,  

𝑃 ≥  𝐸[𝑍𝐺(𝑛)], 

 

called the actuarial present value of the benefit. Notice, if the deaths do not occur at the times expected, 

a premium amount equal to  𝐸[𝑍𝐺(𝑛)]  may prove to be insufficient to pay the benefits. In most 

traditional long-term life insurance plans, the risk to the insurance company is the difference between 

the expected claims and the actual claims. If a number of deaths occur earlier than predicted on the life 

policies, then the claims in a particular year can be substantially larger than expected. This variation 

from expected is the risk that the insurance company accepts. It is measured by the standard deviation 

of the distribution of the present value of the death benefit,  

 

𝑆𝑇𝐷𝐸𝑉[𝑍𝐺(𝑛)] = √Var[𝑍𝐺(𝑛)]. 

 

Since a premium principle includes a charge for risk, the standard deviation appears in some premium 

principle formulas. Also, claims due to death are more predictable when we insure more independent 

lives. Hence, the mortality risk of independent lives can be viewed as diversifiable [4].  

 

If the lives considered are not independent, then the risk may actually increase with an increase in the 

number of lives insured. Consider a group of soldiers in the same platoon. Many deaths could occur 

from this group due to a single event, such as a particular battle or accident. An accident involving the 

platoon causing a large number of deaths would result in a much greater claim than we would expect if 

the lives were independent. In this case, the mortality risk is not diversifiable.  

 

Another source of risk is the long-term interest rate we choose for calculating the present value of the 

death benefit. If the invested premium yields a return substantially less than this interest rate, we may 

fail to collect enough premium to cover the claim at the time of death. This interest rate and investment 

risk is another example of a non-diversifiable risk. The more policies we issue with this fixed interest 

rate, the more the effect an insufficient investment return will have on our ability to pay the claims. 

However, in this paper, we only model the diversifiable mortality risk of independent lives.  

 

To formalize a small sample of premium principles, we use a loss variable 𝑋. In the case of a single 

life currently age 𝑥 , with death benefit 𝑅 , 𝑋 = 𝑅 ∙ 𝑍𝑥 . In the case of the group model 𝑋 = 𝑍𝐺(𝑛) .  
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The premium principles we use are, 

 

a) Expected Value Principle: 

      𝑃 = 𝐸[𝑋](1 + 𝛼),    𝛼 > 0; 
b) Standard Deviation Principle: 

𝑃 = 𝐸[𝑋] + 𝛼 ∙ 𝑆𝑇𝐷𝐸𝑉[𝑋],    𝛼 > 0; 
c) Percentile Principle:         

                                              𝑃 = 𝑄𝛼 where Pr[𝑋 < 𝑄𝛼 ] = 𝛼,    0 < 𝛼 < 1 

for a continuous random variable 𝑋. 

 

An actuary may use a premium principle as a starting point to develop an economically sound 

premium or as a way to determine how much of the premium charged is projected to cover the benefit 

and its corresponding risk. We apply these principles to show net premiums that cover the benefit and 

mortality risk. 

 

7. Sampling from a distribution  
To apply these premium principles, we must understand the distribution for 𝑍𝐺(𝑛) . To gain this 

understanding, we approximate the distribution using a Monte Carlo method. For each insured life in 

the group, we take a random sample from their future lifetime distribution. Using the sample value, we 

calculate the present value of the benefit and sum the results to obtain the aggregate present value for 

the group. This process is repeated 10,000 times. In this section, we discuss the method used to sample 

the distribution of 𝑇𝑥  and apply it to estimate the present value of benefit distribution for a single 

insured. 

 

One of the simplest ways to sample from a distribution is to use the inverse function method [5], [6].  

Suppose we need to sample from a continuous probability distribution for a random variable, 𝑄, with a 

cumulative distribution function 𝐹(𝑞). Let u be a randomly selected number from the interval (0,1).  

Define the random variable 𝑌 = 𝐹−1(𝑢). 𝑌 is well-defined since 𝐹(𝑞) is an increasing function. Let 𝐹𝑌 

be the cumulative distribution function for 𝑌. We can identify 𝐹𝑌 by doing a short calculation. 

 

𝐹𝑌(𝑞) = Pr[𝑌 ≤ 𝑞] 
= Pr [𝐹−1(𝑢) ≤ 𝑞] 
= Pr [𝐹(𝐹−1(𝑢)) ≤ 𝐹(𝑞)] 
= Pr[𝑢 ≤ 𝐹(𝑞)] 
= 𝐹(𝑞) 

 

since 𝑢 is in 𝑈[0,1]. Hence, 𝑌 has the same distribution as 𝑄. We summarize the inverse function 

method algorithm to generate a random variable 𝑄 that has cdf 𝐹(𝑞), 

1. Generate 𝑢 ∈ 𝑈[0,1]; 

2. Set  𝑄 = 𝐹−1(𝑢). 
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To simulate the present value of benefit random variable, 𝑅 ∙ 𝑍𝑥 = 𝑅𝑒−𝛿𝑇𝑥, we sample from the future 

lifetime distribution for (𝑥), 𝑇𝑥, and then use the sample value to calculate the simulated value for 𝑍𝑥.  

For human mortality, we use the Gompertz model previously described. Let 𝑢 = 𝐹𝑇𝑥
(𝑡) and solve for 𝑡 

to obtain the inverse function, 

 

𝐹𝑇𝑥

−1(𝑢) =
1

ln(𝑐)
ln (1 − ln(1 − 𝑢)

ln(𝑐)

𝐵𝑐𝑥
). 

 

When using the Makeham distribution for a human population, this algebraic process is not possible. 

In this case, we can use a numerical solver, such as Goal Seek in EXCEL to solve for particular inverse 

function values.  

 

To demonstrate the simulation process, consider a single insured (35). We use the previously defined 

parameter values for 𝐵 and 𝑐, 𝐵 = 0.00004, 𝑐 = 1.094, in the Gompertz distribution. Suppose the 

death benefit for this insured is 100,000, and the continuously compounded interest rate is 𝛿 = 0.04. If 

the random number 0.67 is chosen from the uniform distribution, then the sample future lifetime for 

this individual is 𝐹𝑇35

−1(0.67) = 52.06 years. The simulated value is 

 

𝑅 ∙ 𝑍35 = 100,000𝑒−0.04×52.06 = 12,463.07. 
  

We simulate the distribution for 𝑅 ∙ 𝑍35  by repeating this process 10,000 times and constructing a 

histogram of the results. One histogram resulting from this simulation is shown in Figure 2. 

 
 

 

 
Figure 2: a histogram for the distribution of 𝑅 ∙ 𝑍35 created using simulation. (Produced by [Excel].) 
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From this simulation we obtain information about the shape of the distribution, an estimate of 
the distribution mean, 19,305, an estimate of the standard deviation, 12,951, and estimates for 
the percentiles. If we apply the expected value principle with 𝛼 = 0.5 to this insured life, then we 
find the net premium 1.5 ∙ 𝐸[𝑋] = 28,957.50. If we apply the standard deviation principle with 
𝛼 = 1, then we get 𝐸[𝑋] + 𝜎𝑥 = 32,256.  Using the 95th percentile, about 42,000, the percentile 
principle yields the net premium that has a 0.95 probability of covering the death benefit at the 
time of death. This probability assumes that we make at least a 4% continuously compounded 
return on the investments funded by the 42,000. 
 

8. Solving the group insurance problem  
Now that we can simulate the present value of the death benefit for a single insured, it is 

straightforward to extend our simulation to the group problem. There are four reasons simulation is 

worth considering when solving the group insurance problem. First, with simulation, we can use 

commonly accessible software, such as Microsoft EXCEL. Second, simulation allows students earlier 

access to studying the type of problem introduced in this paper. By contrast, using a traditional analytic 

approach requires a significant amount of knowledge and notation from a life contingencies textbook. 

Third, simulation provides enough information about the percentiles of the distribution that the 

percentile principle can be applied. It also allows us to estimate the shape of the distribution and its 

tail. Finally, the use of simulation lets us explore net premiums of other insurances and incorporate 

other measures of risk into our calculation as discussed in Section 9. A description of the algorithm 

follows: 

 

1. Let 𝑛 be the number of insured lives in the group; 

2. Enter a Loop 𝑘 =  1 to 𝑛 ‘initialize age and benefit amounts 

a. Age of insured I, 𝑥𝐼 . 

b. Benefit Amount for insured 𝐼, 𝐵𝐼 

3. Next 𝑘 

4. Enter Loop 𝐽 =  1 to 10,000  ‘ Number of simulations 

a. Initialize total present value of death benefit for the group 𝑍𝑇 = 0 

b. Enter Loop 𝐼 =  1 to 𝑛 

i. Sample the future lifetime of insured 𝐼 

1. Generate 𝑢 ∈ 𝑈[0,1]; 

2. 𝑇𝐼 = 𝐹𝑇𝑥𝐼

−1(𝑢) 

ii. Simulate the Present value of the death benefit for insured 𝐼, 𝑍𝐼 = 𝐵𝐼𝑒−𝛿𝑇𝐼 

iii. Add to simulated group total 𝑍𝑇 = 𝑍𝑇 + 𝑍𝐼  

c. Next 𝐼 

d. Record simulated group total. 

5. Next 𝐽 
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A visual basic macro that uses Microsoft EXCEL to carry out the simulation is included in the 

appendix. 

We apply the algorithm to the insurance model for the group of ten employees whose ages and 

benefit amounts are shown in Table 2. Using the Gompertz distribution with values 𝐵 = 0.00004, 

and 𝑐 = 1.094 for the future lifetime distribution results in the histogram in Figure 3. This 

histogram shows an estimate for the distribution of 𝑍𝐺(10). 

 

Figure 3: a histogram for the distribution of  𝑍𝐺(𝑛) created using simulation. (Produced by [Excel].) 

The horizontal axis in Figure 3 has units × 1000 dollars. From this simulation we obtain estimates 
of the distribution mean, 111,387, the standard deviation, 22,742, and the 95th percentile, 
152,500.  If we apply the expected value principle to 𝑋 = 𝑍𝐺(10) with 𝛼 = 0.5, then we calculate 

1.5 ∙ 𝐸[𝑋] = 167,080.50.  Applying the standard deviation principle with 𝛼 = 1, 𝐸[𝑋] + 𝜎𝑋 = 
134,129. Using the 95th percentile, we find 152,500 is the net premium. 
 

9. Conclusion and further study 
A natural extension of the previous model is to consider term insurance. An 𝑛-year term life insurance 

policy pays the benefit if death occurs within 𝑛-years and pays nothing otherwise. Hence the random 

variable for the present value of $1 of benefit for (𝑥)  is defined by 

 

𝑍𝑥,𝑡𝑒𝑟𝑚−𝑛 = {
𝑒−𝛿𝑡, 𝑇𝑥 < 𝑛
0     , 𝑇𝑥 ≥ 𝑛

. 
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For example, consider 20-year term insurance on (45) with a 100,000 benefit amount. We simulate the 

distribution for 𝑋 = 100,000 ∙ 𝑍45,𝑡𝑒𝑟𝑚−20 using the Gompertz distribution previously defined and 𝛿 =
0.04.  The EXCEL macro for this simulation is contained in the accompanying spreadsheet. The 

simulation results in an approximate mean of 7,420 and an approximate standard deviation of 20,685. 

In the resulting histogram, Figure 4, there are no scenarios resulting in a present value of benefit 

between 0 and 44,000. This observation is explained by the 20-year term of the policy. No claim is 

paid if (45) lives 20 years or longer leading to the lower bound for the present value of benefit 

100,000 ∙ 𝑒−.04×20 = 44,933. If we apply the standard deviation principle with 𝛼 = 1, 𝐸[𝑋] + 𝜎𝑋 =
28,105. Because 𝜎𝑋 > 𝐸[𝑋], most of this net premium is paying for risk, which is economically 
unsound. In order to address this problem, the charge for risk must be reduced. We can reduce 
the risk charge per policy by issuing a large number of policies. If N identical policies are issued 
to independent lives, the resulting expected aggregate present value and aggregate standard 

deviation are 𝑁 ∙ 7,420 and √𝑁 ∙ 20,685, respectively. Hence, the net premium per policy is 
 

7,420 +
20,685

√𝑁
. 

 
Therefore, if 10,000 identical policies are issued, the net premium per policy is reduced to 
7,626.85.  The reduction in the risk charge from issuing a large number of policies illustrates the 
role that diversifiable risk plays in explaining the economics of the insurance industry. 

 

 
Figure 4: a histogram for the distribution of 100,000 ∙ 𝑍45,𝑡𝑒𝑟𝑚−20  created using simulation.  

(Produced by [Excel].) 
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It is instructive to compare the net premiums obtained at different ages and for different terms in order 

to understand the premium differences one observes in sample term life insurance rate sheets. Sample 

term life insurance rate sheets and quotes can be found online. Term insurance premium rates are 

normally given as a level monthly payment and will include a loading for profit and expenses. To 

determine a level premium paid periodically, it is necessary to model life annuities. The interested 

reader can find detailed discussions of life annuities in actuarial modeling textbooks [3], [4]. Also, the 

premium quote from a sample rate sheet will vary according to risk class. The risk classes used by 

insurance companies differ, but most include the designations preferred and non-preferred, male and 

female, tobacco and non-tobacco. A preferred, male, non-tobacco user is an example of a risk class 

using these designations. The actuary will use a different life table to calculate the premiums for each 

risk class. To make the group life net premiums as determined in Section 8 more applicable, the reader 

can use life tables that reflect the sex and tobacco use of each life in Table 2.  

 

One issue with term insurance is that the insurance contract ends at the end of the term, and the 

insured’s premium seems to have been lost. Of course, it actually goes to pay claims on other term 

policies whose unfortunate owners do not survive their term. In the late 1990s, in order to help 

alleviate the feeling of having lost the premium, companies introduced return of premium (ROP) term 

policies. In ROP term, if a claim is not made during the term, the entire premium is returned to the 

policy owner. Naturally, there is a cost to this additional benefit. Using simulation and the models 

developed thus far, this additional cost and the effect this benefit has on the present value distribution 

can be explored. We begin with the present value equation where 𝑅 is the death benefit and P is the net 

premium,  

 

𝑍𝑥,𝑅𝑂𝑃−𝑛 = 𝑅 ∙ 𝑍𝑥,𝑡𝑒𝑟𝑚−𝑛 + {
0, 𝑇𝑥 < 𝑛

𝑃𝑒−𝛿𝑛     , 𝑇𝑥 ≥ 𝑛
 

 

Since 𝑃 is included in the random variable for the benefit, circularity results if the distribution for 

𝑍𝑥,𝑅𝑂𝑃−𝑛 is used in determining P. However, one can use the expected value principle as a starting 

point when calculating this premium. For example, if we use the expected value of the present value of 

the ROP benefit for the net premium, we obtain the equation, 

 

𝑃 = 𝑅 ∙ 𝐸[𝑍𝑥,𝑡𝑒𝑟𝑚−𝑛] + 𝑃𝑒−𝛿𝑛 ∙ 𝑝𝑟𝑜𝑏[𝑇𝑥 ≥ 𝑛], 

and solving for 𝑃 

𝑃 =
𝑅 ∙ 𝐸[𝑍𝑥,𝑡𝑒𝑟𝑚−𝑛 ]

1 − 𝑒−𝛿𝑛 ∙ 𝑝𝑟𝑜𝑏[𝑇𝑥 ≥ 𝑛]
. 

 

To illustrate the determination of 𝑃 , consider 20-year ROP term insurance issued to (45) with a 

100,000 benefit amount. From the previous example, 
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100,000 ∙ 𝐸[𝑍45,𝑡𝑒𝑟𝑚−20 ] ≈ 7,420. 
 

Using the Gompertz distribution, 

 

𝑝𝑟𝑜𝑏[𝑇45 ≥ 20] = 1 − 𝐹𝑇45
(20) = 0.8793. 

Thus 

𝑃 ≈
7,420

1 − 𝑒−.04×20 ∙ 0.8793
= 12,266.39. 

 

Having a value for 𝑃, we can use simulation to estimate the distribution of 𝑍𝑥,𝑅𝑂𝑃−𝑛. Beginning with 

the estimate of the distribution, the reader may develop a method or algorithm that can be used to 

determine 𝑃 using the percentile principle for the present value of the ROP benefit. 

 

It is also interesting to consider the use of distributions other than the Gompertz distribution for 𝑇𝑥. 

When using other parameterized future lifetime distributions, such as the Makeham distribution, it may 

be more appropriate to use another technique, such as the rejection method, for sampling. Useful and 

well-described methods of sampling and simulation are found in [6] and [7].  

 

Another natural extension of the group problem is to explore the cost of interest rate risk. In this case, 

both the future lifetime variable and an interest rate path must be simulated. Suppose 𝑁 + 𝑓, where 𝑁 

is a positive integer and 0 < 𝑓 < 1, is a sample value from the distribution of 𝑇𝑥. Let 𝛿𝑖, 𝑖 = 1, … , 𝑁 +
1, be a continuously compounded annual interest rate path where 𝛿𝑖 is the rate effective in year 𝑖. Then 

the present value of the benefit random variable becomes, 

 

𝑅 ∙ 𝑍𝑥 = 𝑅𝑒−𝛿𝑇𝑥 = 𝑅𝑒−(∑ 𝛿𝑖
𝑁
𝑖=1 +𝑓∙𝛿𝑁+1). 

 

With this addition, our model captures not only mortality risk, but also interest rate risk. A very 

accessible introduction to modeling interest rates is found in [2].  

 

Finally, the student may research the failure rates for commonly purchased items such as cell phones 

or laptops. From the failure rates, life table functions as illustrated in Table 1 can be calculated, and a 

curve fit to the data. Since a warranty is just term life insurance with a benefit amount equal to the cost 

or a prorated cost of the item, the term insurance model with some modification can be applied to 

determine net warranty prices.  
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Supplementary Electronic Material 
 

Excel worksheet with data and macros:  
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Appendix 
Visual Basic Macro for simulating the distribution for Group Life policies. 

  

Sub GroupLife() 

' GroupLife Macro 

Sheets("Gompertz GL").Select 

 

Let n = Excel.Cells(1, 16) 

Let Delta = Excel.Cells(2, 16)  ' Continuously compounded interest rate 

 

Let A = Excel.Cells(2, 3) 

Let B = Excel.Cells(4, 3) 

Let C = Excel.Cells(3, 3) 

Application.Calculation = xlCalculationManual 'Speeds up macro 

For i = 1 To 10 

 

Let X = Excel.Cells(i + 3, 15) 'Age of insured 

Let Benefit = Excel.Cells(i + 3, 16) ' Benefit Amount 

Excel.Cells(3, i + 18) = X 

 

    For j = 1 To n 

      

     'This generates a randomly chosen value from U[0,1]. 

        Randomize Timer 

        u = Rnd 

        T = 1 / Log(C) * Log(1 - Log(1 - u) * Log(C) / (B * (C ^ X))) 

        Z = Benefit * Exp(-Delta * T) 

        'Excel.Cells(3 + j, 26) = T 

        Excel.Cells(3 + j, i + 18) = Z 

      

    Next j 

Next i 

Application.Calculation = xlCalculationAutomatic 

End Sub  
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Table 3. Life table for the total population: United States, 2010, [1] 

 

Prob of 

dying 

between x 

and x+1 

Number 

surviving 

to age x 

Number 

dying 

between x 

and x+1 

Person-years 

lived 

between age 

x and x+1 

Total Person-

years lived 

above age x. 

Expectation 

of life at 

age x. 

Age q(x) l(x) d(x) L(x) T(x) e(x) 

0-1 0.006123 100,000 612 99,465 7,866,027 78.7 

1-2 0.000428 99,388 43 99,366 7,766,561 78.1 

2-3 0.000275 99,345 27 99,331 7,667,195 77.2 

3-4 0.000211 99,318 21 99,307 7,567,864 76.2 

4-5 0.000158 99,297 16 99,289 7,468,556 75.2 

5-6 0.000145 99,281 14 99,274 7,369,267 74.2 

6-7 0.000128 99,267 13 99,260 7,269,993 73.2 

7-8 0.000114 99,254 11 99,249 7,170,733 72.2 

8-9 0.000100 99,243 10 99,238 7,071,484 71.3 

9-10 0.000087 99,233 9 99,229 6,972,246 70.3 

10-11 0.000079 99,224 8 99,220 6,873,017 69.3 

11-12 0.000086 99,216 9 99,212 6,773,797 68.3 

12-13 0.000116 99,208 12 99,202 6,674,585 67.3 

13-14 0.000175 99,196 17 99,188 6,575,383 66.3 

14-15 0.000252 99,179 25 99,167 6,476,195 65.3 

15-16 0.000333 99,154 33 99,138 6,377,028 64.3 

16-17 0.000412 99,121 41 99,101 6,277,891 63.3 

17-18 0.000492 99,080 49 99,056 6,178,790 62.4 

18-19 0.000573 99,032 57 99,003 6,079,734 61.4 

19-20 0.000655 98,975 65 98,942 5,980,731 60.4 

20-21 0.000744 98,910 74 98,873 5,881,789 59.5 

21-22 0.000829 98,836 82 98,795 5,782,916 58.5 

22-23 0.000892 98,754 88 98,710 5,684,120 57.6 

23-24 0.000925 98,666 91 98,621 5,585,410 56.6 

24-25 0.000934 98,575 92 98,529 5,486,789 55.7 

25-26 0.000936 98,483 92 98,437 5,388,260 54.7 

26-27 0.000943 98,391 93 98,344 5,289,824 53.8 

27-28 0.000953 98,298 94 98,251 5,191,479 52.8 

28-29 0.000971 98,204 95 98,157 5,093,228 51.9 

29-30 0.000998 98,109 98 98,060 4,995,071 50.9 

30-31 0.001029 98,011 101 97,961 4,897,011 50.0 

31-32 0.001063 97,910 104 97,858 4,799,051 49.0 

32-33 0.001099 97,806 108 97,752 4,701,193 48.1 

33-34 0.001137 97,699 111 97,643 4,603,440 47.1 
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Table 3. (Cont.) Life table for the total population: United States, 2010, [1] 

 

Prob of 

dying 

between x 

and x+1 

Number 

surviving 

to age x 

Number 

dying 

between x 

and x+1 

Person-years 

lived 

between age 

x and x+1 

Total Person-

years lived 

above age x. 

Expectation 

of life at 

age x. 

Age q(x) l(x) d(x) L(x) T(x) e(x) 

34-35 0.001180 97,587 115 97,530 4,505,797 46.2 

35-36 0.001235 97,472 120 97,412 4,408,267 45.2 

36-37 0.001302 97,352 127 97,289 4,310,855 44.3 

37-38 0.001377 97,225 134 97,158 4,213,567 43.3 

38-39 0.001461 97,091 142 97,020 4,116,408 42.4 

39-40 0.001557 96,949 151 96,874 4,019,388 41.5 

40-41 0.001663 96,798 161 96,718 3,922,514 40.5 

41-42 0.001793 96,637 173 96,551 3,825,796 39.6 

42-43 0.001962 96,464 189 96,370 3,729,245 38.7 

43-44 0.002177 96,275 210 96,170 3,632,875 37.7 

44-45 0.002423 96,065 233 95,949 3,536,705 36.8 

45-46 0.002676 95,833 256 95,704 3,440,756 35.9 

46-47 0.002931 95,576 280 95,436 3,345,052 35.0 

47-48 0.003205 95,296 305 95,143 3,249,616 34.1 

48-49 0.003505 94,990 333 94,824 3,154,473 33.2 

49-50 0.003830 94,658 363 94,476 3,059,649 32.3 

50-51 0.004177 94,295 394 94,098 2,965,173 31.4 

51-52 0.004535 93,901 426 93,688 2,871,075 30.6 

52-53 0.004903 93,475 458 93,246 2,777,386 29.7 

53-54 0.005284 93,017 491 92,771 2,684,140 28.9 

54-55 0.005684 92,526 526 92,263 2,591,369 28.0 

55-56 0.006117 92,000 563 91,718 2,499,106 27.2 

56-57 0.006589 91,437 603 91,136 2,407,388 26.3 

57-58 0.007095 90,834 644 90,512 2,316,253 25.5 

58-59 0.007626 90,190 688 89,846 2,225,741 24.7 

59-60 0.008180 89,502 732 89,136 2,135,895 23.9 

60-61 0.008767 88,770 778 88,381 2,046,759 23.1 

61-62 0.009397 87,992 827 87,578 1,958,378 22.3 

62-63 0.010085 87,165 879 86,725 1,870,800 21.5 

63-64 0.010863 86,286 937 85,817 1,784,075 20.7 

64-65 0.011758 85,348 1,004 84,847 1,698,258 19.9 

65-66 0.012810 84,345 1,080 83,805 1,613,411 19.1 

66-67 0.014011 83,264 1,167 82,681 1,529,606 18.4 
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Table 3(Cont). Life table for the total population: United States, 2010, [1] 

 

Prob of 

dying 

between x 

and x+1 

Number 

surviving 

to age x 

Number 

dying 

between x 

and x+1 

Person-years 

lived 

between age 

x and x+1 

Total Person-

years lived 

above age x. 

Expectation 

of life at 

age x. 

Age q(x) l(x) d(x) L(x) T(x) e(x) 

67-68 0.015290 82,098 1,255 81,470 1,446,925 17.6 

68-69 0.016601 80,843 1,342 80,172 1,365,455 16.9 

69-70 0.018005 79,501 1,431 78,785 1,285,283 16.2 

70-71 0.019548 78,069 1,526 77,306 1,206,499 15.5 

71-72 0.021294 76,543 1,630 75,728 1,129,192 14.8 

72-73 0.023275 74,913 1,744 74,041 1,053,464 14.1 

73-74 0.025528 73,169 1,868 72,236 979,423 13.4 

74-75 0.028061 71,302 2,001 70,301 907,188 12.7 

75-76 0.030820 69,301 2,136 68,233 836,886 12.1 

76-77 0.033775 67,165 2,268 66,031 768,654 11.4 

77-78 0.037252 64,896 2,418 63,688 702,623 10.8 

78-79 0.041136 62,479 2,570 61,194 638,935 10.2 

79-80 0.045411 59,909 2,721 58,549 577,741 9.6 

80-81 0.050146 57,188 2,868 55,754 519,193 9.1 

81-82 0.055445 54,321 3,012 52,815 463,438 8.5 

82-83 0.061272 51,309 3,144 49,737 410,624 8.0 

83-84 0.067764 48,165 3,264 46,533 360,887 7.5 

84-85 0.075818 44,901 3,404 43,199 314,354 7.0 

85-86 0.085319 41,497 3,540 39,727 271,155 6.5 

86-87 0.094975 37,956 3,605 36,154 231,429 6.1 

87-88 0.105525 34,351 3,625 32,539 195,275 5.7 

88-89 0.117007 30,726 3,595 28,929 162,736 5.3 

89-90 0.129450 27,131 3,512 25,375 133,807 4.9 

90-91 0.142873 23,619 3,375 21,932 108,432 4.6 

91-92 0.157280 20,245 3,184 18,653 86,500 4.3 

92-93 0.172661 17,061 2,946 15,588 67,847 4.0 

93-94 0.188988 14,115 2,668 12,781 52,259 3.7 

94-95 0.206214 11,447 2,361 10,267 39,478 3.4 

95-96 0.224274 9,087 2,038 8,068 29,211 3.2 

98-99 0.282492 3,935 1,112 3,379 10,316 2.6 

99-

100 0.302838 2,823 855 2,396 6,937 2.5 

>100 1.000000 1,968 1,968 4,542 4,542 2.3 

 


